Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

## Le-Qing Fan, ${ }^{\text {a }}$ * Ling Chen ${ }^{b}$ and Li-Ming Wu ${ }^{\text {b }}$

${ }^{\text {a }}$ Institute of Materials Physical Chemistry, Huaqiao University, Quanzhou, Fujian 362021, People's Republic of China, and ${ }^{\mathbf{b}}$ State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China

Correspondence e-mail: Iqfan@hqu.edu.cn

## Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.028 \AA$
$R$ factor $=0.074$
$w R$ factor $=0.213$
Data-to-parameter ratio $=22.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
## catena-Poly[tris(2,2'-bipyridine)nickel(II) [hexa- $\mu$-iodo-diplumbate(II)]]

In the title compound, $\left\{\left[\mathrm{Ni}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{3}\right]\left[\mathrm{Pb}_{2} \mathrm{I}_{6}\right]\right\}_{n}$, each $\mathrm{Pb}^{\mathrm{II}}$ ion is coordinated by six $\mathrm{I}^{-}$ions in a distorted octahedral environment. $\mathrm{PbI}_{6}$ octahedra are connected by common faces to form a one-dimensional anion chain.

## Comment

Lead(II) iodide organic-inorganic hybrid complexes are of special interest because they have significant structural, electrical, non-linear optical, and other physical properties (Mitzi et al., 1995; Guloy et al., 2001; Fan et al., 2006). Their anionic structures range from isolated anions to infinite chains, layered perovskites and three-dimensional polymeric networks, which are modulated by the cations (Li et al., 2005; Mercier, 2005; Poglitsch \& Weber, 1987). We report here the crystal structure of the title lead(II) iodide complex, (I), with a one-dimensional anion chain.


(I)

In (I), there are two crystallographically independent $\mathrm{Pb}^{\mathrm{II}}$ ions in the asymmetric unit. Each is six-coordinated in a distorted octahedral environment by six $\mathrm{I}^{-}$ions with $\mathrm{Pb}-\mathrm{I}$ distances ranging from 3.1561 (12) to 3.2830 (14) $\AA$ and cis I-$\mathrm{Pb}-\mathrm{I}$ angles from 81.35 (3) to 102.99 (4) ${ }^{\circ}$ (Table 1). Adjacent octahedra are joined by common faces (I4/I5/I6 and I1/I2/I3) to form a one-dimensional anion chain $\left[\mathrm{Pb}_{2} \mathrm{I}_{6}\right]_{n}^{2 n-}$ along the $c$ axis (Fig. 1). The cation is $\left[\mathrm{Ni}(\text { bipyridine })_{3}\right]^{2+}$, in which each $\mathrm{Ni}^{\mathrm{II}}$ ion is surrounded by six N atoms from three different bipyridine molecules in a distorted octahedral geometry. The anion chain has no significant hydrogen-bonding interactions with the cations.

## Experimental

$\mathrm{PbI}_{2}(184 \mathrm{mg}, 0.4 \mathrm{mmol})$ and $\mathrm{NaI} \cdot 2 \mathrm{H}_{2} \mathrm{O}(74 \mathrm{mg}, 0.4 \mathrm{mmol})$ were dissolved in DMF ( 10 ml ). A solution of $2,2^{\prime}$-bipyridine ( 94 mg , $0.6 \mathrm{mmol})$ and $\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(58 \mathrm{mg}, 0.2 \mathrm{mmol})$ in DMF ( 10 ml ) was added and the solution was stirred for 10 min . Vapor of 2-PrOH was diffused slowly into the resulting solution. After about two weeks, orange crystals of (I) were formed.

Received 30 October 2006
Accepted 11 November 2006

## Crystal data

| $\left[\mathrm{Ni}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{3}\right]\left[\mathrm{Pb}_{2} \mathrm{I}_{6}\right]$ | $Z=4$ |
| :--- | :--- |
| $M_{r}=1703.04$ | $D_{x}=2.773 \mathrm{Mg} \mathrm{m}^{-3}$ |
| Monoclinic, $P 2_{1} / c$ | Mo K $\alpha$ radiation |
| $a=17.2337(14) \AA$ | $\mu=13.26 \mathrm{~mm}^{-1}$ |
| $b=14.7012(8) \AA$ | $T=293(2) \mathrm{K}$ |
| $c=16.4273(12) \AA$ | Prism, orange |
| $\beta=101.409(5)^{\circ}$ | $0.15 \times 0.1 \times 0.05 \mathrm{~mm}$ |
| $V=40797(5) \AA^{3}$ |  |

## Data collection

Rigaku Mercury CCD diffractometer
$\omega$ scans
Absorption correction: multi-scan (CrystalClear; Rigaku, 2000)
$T_{\text {min }}=0.332, T_{\max }=1.000$
(expected range $=0.171-0.515)$

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.074$
$w R\left(F^{2}\right)=0.213$
$S=1.04$
9307 reflections
406 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0949 P)^{2}\right. \\
&+47.3372 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.005 \\
& \Delta \rho_{\max }= 2.23 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-2.30 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ( $\left(\AA,{ }^{\circ}\right)$.

| $\mathrm{Pb} 1-\mathrm{I} 1$ | $3.1561(12)$ | $\mathrm{Pb} 2-\mathrm{I} 6$ | $3.2088(14)$ |
| :--- | ---: | :--- | ---: |
| $\mathrm{Pb} 1-\mathrm{I} 3$ | $3.2203(12)$ | $\mathrm{Pb} 2-\mathrm{I} 2^{\mathrm{i}}$ | $3.2332(14)$ |
| $\mathrm{Pb} 1-\mathrm{I} 5$ | $3.2438(13)$ | $\mathrm{Pb} 2-\mathrm{I} 5$ | $3.2457(13)$ |
| $\mathrm{Pb} 1-\mathrm{I} 2$ | $3.2560(14)$ | $\mathrm{Pb} 2-\mathrm{I} 3^{\mathrm{i}}$ | $3.2617(13)$ |
| $\mathrm{Pb} 1-\mathrm{I} 6$ | $3.2774(13)$ | $\mathrm{Pb} 2-\mathrm{I} 1^{\mathrm{i}}$ | $3.2624(13)$ |
| $\mathrm{Pb} 1-\mathrm{I} 4$ | $3.2830(14)$ | $\mathrm{Pb} 2-\mathrm{I} 4$ | $3.2661(16)$ |
|  |  |  |  |
| $\mathrm{I} 1-\mathrm{Pb} 1-\mathrm{I} 3$ | $87.31(3)$ | $\mathrm{I} 6-\mathrm{Pb} 2-\mathrm{I} 2^{\mathrm{i}}$ | $97.81(4)$ |
| $\mathrm{I} 1-\mathrm{Pb} 1-\mathrm{I} 5$ | $96.73(4)$ | $\mathrm{I} 6-\mathrm{Pb} 2-\mathrm{I} 5$ | $85.82(3)$ |
| $\mathrm{I} 3-\mathrm{Pb} 1-\mathrm{I} 5$ | $90.72(3)$ | $\mathrm{I} 2^{\mathrm{i}}-\mathrm{Pb} 2-\mathrm{I} 5$ | $96.84(4)$ |
| $\mathrm{I} 1-\mathrm{Pb} 1-\mathrm{I} 2$ | $84.14(4)$ | $\mathrm{I} 6-\mathrm{Pb} 2-\mathrm{I} 3^{\mathrm{i}}$ | $178.89(4)$ |
| $\mathrm{I} 3-\mathrm{Pb} 1-\mathrm{I} 2$ | $81.63(3)$ | $\mathrm{I} 2^{\mathrm{i}}-\mathrm{Pb} 2-\mathrm{I}^{\mathrm{i}}$ | $81.35(3)$ |
| $\mathrm{I} 5-\mathrm{Pb} 1-\mathrm{I} 2$ | $172.26(4)$ | $\mathrm{I} 5-\mathrm{Pb} 2-\mathrm{I} 3^{\mathrm{i}}$ | $93.55(3)$ |
| $\mathrm{I} 1-\mathrm{Pb} 1-\mathrm{I} 6$ | $87.83(3)$ | $\mathrm{I} 6-\mathrm{Pb} 2-\mathrm{I} 1^{\mathrm{i}}$ | $95.76(3)$ |
| $\mathrm{I} 3-\mathrm{Pb} 1-\mathrm{I} 6$ | $172.92(4)$ | $\mathrm{I} 2^{\mathrm{i}}-\mathrm{Pb} 2-\mathrm{I} 1^{\mathrm{i}}$ | $82.83(3)$ |
| $\mathrm{I} 5-\mathrm{Pb} 1-\mathrm{I} 6$ | $84.73(3)$ | $\mathrm{I} 5-\mathrm{Pb} 2-\mathrm{I} 1^{\mathrm{i}}$ | $178.42(3)$ |
| $\mathrm{I} 2-\mathrm{Pb} 1-\mathrm{I} 6$ | $102.99(4)$ | $\mathrm{I} 3^{\mathrm{i}}-\mathrm{Pb} 2-\mathrm{I} 1^{\mathrm{i}}$ | $84.87(3)$ |
| $\mathrm{I} 1-\mathrm{Pb} 1-\mathrm{I} 4$ | $171.49(4)$ | $\mathrm{I} 6-\mathrm{Pb} 2-\mathrm{I} 4$ | $85.06(4)$ |
| $\mathrm{I} 3-\mathrm{Pb} 1-\mathrm{I} 4$ | $101.19(4)$ | $\mathrm{I} 2^{\mathrm{i}}-\mathrm{Pb} 2-\mathrm{I} 4$ | $177.11(4)$ |
| $\mathrm{I} 5-\mathrm{Pb} 1-\mathrm{I} 4$ | $83.41(4)$ | $\mathrm{I} 5-\mathrm{Pb} 2-\mathrm{I} 4$ | $83.64(4)$ |
| $\mathrm{I} 2-\mathrm{Pb} 1-\mathrm{I} 4$ | $96.88(4)$ | $\mathrm{I} 3^{\mathrm{i}}-\mathrm{Pb} 2-\mathrm{I} 4$ | $95.78(4)$ |
| $\mathrm{I} 6-\mathrm{Pb} 1-\mathrm{I} 4$ | $83.70(4)$ | $\mathrm{I} 1^{\mathrm{i}}-\mathrm{Pb} 2-\mathrm{I} 4$ | $96.61(4)$ |



Figure 1
The asymmetric uni of (I), together with additional I atoms to complete the coordination of both Pb atoms. Displacement ellipsoids are drawn at the $30 \%$ probability level and H atoms have been omitted for clarity. [Symmetry code: (A) $x, \frac{1}{2}-y,-\frac{1}{2}+z$.]

H atoms were positioned geometrically and refined as riding atoms, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The highest peak is located $0.96 \AA$ from atom I4 and deepest hole is located 0.78 Å from atom Pb 2 .

Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

This work was supported financially by the National Natural Science Foundation of China (No. 20401013) and the Research Fund of Huaqiao University (No. 06BS216).

## References

Bruker (1998). SHELXTL (Version 5.1). Bruker AXS Inc., Madison, Wisconsin, USA.
Fan, L.-Q., Wu, L.-M. \& Chen, L. (2006). Inorg. Chem. 45, 3149-3151.
Guloy, A. M., Tang, Z.-J., Miranda, P. B. \& Srdanov, V. I. (2001). Adv. Mater. 13, 833-837.
Li, M.-T., Liao, Q.-L., Fu, X.-C. \& Wang, C.-G. (2005). Acta Cryst. E61, m1396m1397.
Mercier, N. (2005). CrystEngComm, 7, 429-432.
Mitzi, D. B., Wang, S., Feild, C. A., Chess, C. A. \& Guloy, A. M. (1995). Science, 267, 1473-1476.
Poglitsch, A. \& Weber, D. (1987). J. Chem. Phys. 87, 6373-6378.
Rigaku (2000). CrystalClear. Version 1.3. Rigaku Corporation, Akishima, Tokyo, Japan.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

[^1]
[^0]:    © 2006 International Union of Crystallography All rights reserved

[^1]:    Symmetry code: (i) $x,-y+\frac{1}{2}, z-\frac{1}{2}$.

